skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Quek, Francis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Medical palpation is a task that traditionally requires a skilled practitioner to assess and diagnose a patient through direct touch and manipulation of their body. In regions with a shortage of such professionals, robotic hands or sensorized gloves could potentially capture the necessary haptic information during palpation exams and relay it to medical doctors for diagnosis. From an engineering perspective, a comprehensive understanding of the relevant motions and forces is essential for designing haptic technologies capable of fully capturing this information. This study focuses on thyroid examination palpation, aiming to analyze the hand motions and forces applied to the patient’s skin during the procedure. We identified key palpation techniques through video recordings and interviews and measured the force characteristics during palpation performed by both non-medical participants and medical professionals. Our findings revealed five primary palpation hand motions and characterized the multi-dimensional interaction forces involved in these motions. These insights provide critical design guidelines for developing haptic sensing and display technologies optimized for remote thyroid nodule palpation and diagnosis. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Active, exploratory touch supports human perception of a broad set of invisible physical surface properties. When traditionally hands-on tasks, such as medical palpation of soft tissue, are translated to virtual settings, haptic perception is throttled by technological limitations, and much of the richness of active exploration can be lost. The current research seeks to restore some of this richness with advanced methods of passively conveying haptic data alongside synchronized visual feeds. A robotic platform presented haptic stimulation modeled after the relative motion between a hypothetical physician's hands and artificial tissue samples during palpation. Performance in discriminating the sizes of hidden “tumors” in these samples was compared across display conditions which included haptic feedback and either: 1) synchronized video of the participant's hand, recorded during active exploration; 2) synchronized video of another person's hand; 3) no accompanying video. The addition of visual feedback did not improve task performance, which was similar whether receiving relative motion recorded from one's own hand or someone else's. While future research should explore additional strategies to improve task performance, this initial attempt to translate active haptic sensations to passive presentations indicates that visuo-haptic feedback can induce reliable haptic perceptions of motion in a stationary passive hand. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract Although research has touted the value of making in educational settings, scant work has been done in formal school contexts utilizing quantitative methods. This could be attributed to the various challenges in integrating making in school settings. To fill in the gap, this study presents an approach to integrate making into science classes at the 3rd to 5th grade levels in a U.S. public school for four consecutive years (2015–2019). We examined the effect of the program on students’ self-beliefs (self-efficacy, motivation, and self-concept) using a longitudinal quasi-experimental design. We also examined the effect of making on students’ knowledge and skills using state testing data. Results suggest that when averaged across post school year surveys, students in maker classes (vs. control) reported higher self-efficacy beliefs in science and making as well as more interests in STEM-related careers. Moreover, over two school years, we observed that students in the control group experienced declines on some of our variables while our maker students did not. Data thereby speaks to the potential value and promise of integrating making into formal school settings. Practical implications are discussed. 
    more » « less
  4. Abstract This article studies fine motor strategies for precise spatial manipulation in close-to-body interactions. Our innate ability for precise work is the result of the confluence of visuo-tactile perception, proprioception, and bi-manual motor control. Contrary to this, most mixed-reality (MR) systems are designed for interactions at arms length. To develop guidelines for precise manipulations in MR systems, there is a need for a systematic study of motor strategies including physical indexing, bi-manual coordination, and the relationship between visual and tactile feedback. To address this need, we present a series of experiments using three variations of a tablet-based MR interface using a close-range motion capture system and motion-tracked shape proxies. We investigate an elaborate version of the classic peg-and-hole task that our results strongly suggests the critical need for high precision tracking to enable precise manipulation. 
    more » « less
  5. In the face of information technology changes, not all students will have access to the means to prepare for this future of work. In addressing this issue, in this study, the authors investigate the impact of a ‘Making as Micro-Manufacturing (M2)’ model in motivating STEM-activity participation and developing self-efficacy among high-schoolers hailing from an underserved community. The approach involved integrating practice-based learning and activities into a high-school class curriculum resulting in the production of small-batch volumes of products in real-world settings for everyday use like instructional kits for elementary school learning. Pre- and post-surveys were administered to ascertain the differences in students’ Making and engineering self- efficacy tendencies. Our results saw increases in the students’ Making and engineering self-efficacy across multiple dimensions and in-situ during a production process. In addition, our results also quantify and characterize that kinds of helping behaviours that occur in the students’ own self-organised production team. 
    more » « less
  6. Storytelling is a critical step in the cognitive development of children. Particularly, this requires children to mentally project into the story context and to identify with the thoughts of the characters in their stories. We propose to support free imagination in creative storytelling through an enactment- based approach that allows children to embody an avatar and perform as the story character. We designed our story creation interface with two modes of avatar: the story-relevant avatar and the self-avatar, to investigate the effects of avatar design on the quality of children’s creative products. In our study with 20 child participants, the results indicate that self-avatars can create a stronger sense of identification and embodied presence, while story-relevant avatars can provide a scaffold for mental projection. 
    more » « less
  7. The estimation of the direction of visual attention is critical to a large number of interactive systems. This paper investigates the cross-modal relation of the position of one's feet (or standing stance) to the focus of gaze. The intuition is that while one CAN have a range of attentional foci from a particular stance, one may be MORE LIKELY to look in specific directions given an approach vector and stance. We posit that the cross-modal relationship is constrained by biomechanics and personal style. We define a stance vector that models the approach direction before stopping and the pose of a subject's feet. We present a study where the subjects' feet and approach vector are tracked. The subjects read aloud contents of note cards in 4 locations. The order of `visits' to the cards were randomized. Ten subjects read 40 lines of text each, yielding 400 stance vectors and gaze directions. We divided our data into 4 sets of 300 training and 100 test vectors and trained a neural net to estimate the gaze direction given the stance vector. Our results show that 31% our gaze orientation estimates were within 5°, 51% of our estimates were within 10°, and 60% were within 15°. Given the ability to track foot position, the procedure is minimally invasive. 
    more » « less